вва 66680

ADENOSINE 3',5'-CYCLIC PHOSPHATE PHOSPHODIESTERASE FROM BOVINE THYROID: ISOLATION AND PROPERTIES OF A PARTIALLY PURIFIED, SOLUBLE FRACTION

M. SZABO AND G. BURKE

Division of Endocrinology and Nuclear Medicine, Department of Medicine, Michael Reese Hospital and Medical Center, and the Department of Medicine, University of Chicago Pritzker School of Medicine, Chicago, Ill. 60616 (U.S.A.)

(Received March 17th, 1972)

SUMMARY

- 1. Adenosine 3',5'-cyclic phosphate (cyclic AMP) phosphodiesterase was partially purified from a 10 000 \times g supernate of bovine thyroid; the enzyme preparation so obtained was free of 5'-nucleotidase and deaminase activity and yielded [³H]-adenosine 5'-phosphate (AMP) as the end product of enzymatic hydrolysis of cyclic [³H]AMP.
- 2. Using an assay procedure that relied on physiologic substrate concentrations (i.e. conforming to known intracellular levels of cyclic AMP in thyroid), the partially purified thyroid phosphodiesterase was kinetically characterized and compared with a highly purified beef heart phosphodiesterase preparation. Double reciprocal plots of cyclic AMP hydrolysis yielded two apparent Michaelis constants: the lower in the 10^{-6} M and the higher in the 10^{-5} M range. Two apparent K_m values were also obtained for Mg²⁺ which was required for expression of maximal enzymatic activity. Other bivalent cations (Mn²⁺, Co²⁺, Ca²⁺) activated the enzyme to a significantly lesser extent; 2^{-2} was stimulatory at 10^{-4} M and inhibitory at 2^{-3} M.
- 3. A number of cyclic nucleotides and acylated derivatives thereof interfered with the enzymatic hydrolysis of cyclic [3 H]AMP to varying degrees; of these the mono- and dibutyryl derivatives of cyclic AMP were the most potent inhibitors. The inhibition was competitive in nature with K_i values for dibutyryl cyclic AMP, N^6 -monobutyryl cyclic AMP, and O^2 -monobutyryl cyclic AMP of $1.6 \cdot 10^{-4}$ M, $1.1 \cdot 10^{-4}$ M and $2.6 \cdot 10^{-5}$ M, respectively.
- 4. Methylxanthines and quazodine strongly inhibited thyroid phosphodiesterase whereas sulfonylureas were weakly inhibitory.
- 5. High concentrations of pituitary thyrotropin in vitro enhanced thyroid phosphodiesterase activity slightly while heat-inactivated thyrotropin, long-acting thyroid stimulator immunoglobulin G, and the prostaglandins E_2 and F_{1a} were ineffective; prostaglandin E_1 was weakly inhibitory. The prostaglandin antagonists 7-oxa-13-prostynoic acid and polyphloretin phosphate effected significant inhibition of thyroid phosphodiesterase, possibly accounting for the agonist properties of these agents occasionally observed in vitro.

6. Upon complexing with a cyclic AMP-binding protein prepared from beef kidney, cyclic [³H]AMP became completely resistant to enzymatic breakdown by thyroidal phosphodiesterase.

INTRODUCTION

Adenosine 3',5'-cyclic phosphate (cyclic AMP) has been identified as an important intracellular mediator of the action of thyroid stimulators¹. Activation of thyroidal adenylate cyclase by pituitary thyroid stimulating hormone^{2,3}, the longacting thyroid stimulator of Graves' disease4,5 and the prostaglandins6,7 has been conclusively demonstrated. The regulation of intracellular levels of cyclic AMP in the thyroid may, however, also be achieved by changes in the activity of 3',5'-cyclic nucleotide phosphodiesterase8. Previous studies of thyroidal phosphodiesterase activity have failed to demonstrate a direct in vitro effect of thyrotropin^{2,3,9}, prostaglandins⁶ or long-acting thyroid stimulator⁹, whereas prolonged thyroid stimulation by thyrotropin in vivo appeared to enhance the enzymatic hydrolysis of cyclic AMP¹⁰. However, each of these studies relied on the use of crude homogenates or extracts of thyroid which, in addition to phosphodiesterase, contain other hydrolytic enzymes of nucleotide metabolism (e.g. 5'-nucleotidase, deaminase) as well as cyclic AMP-binding protein(s). Since these enzymes and proteins may have materially influenced the results obtained, one must be cautious in assuming that such studies yielded unequivocal assessment of direct effects on thyroid phosphodiesterase activity. It seemed desirable, therefore, to purify thyroidal phosphodiesterase to a point where it was free of interfering enzyme activity and to utilize such a preparation for the reevaluation of direct effects of agents known to influence thyroid function and thyroidal cyclic AMP levels in vitro. Further, we undertook the kinetic characterization of the partially purified enzyme and compared some of its properties with those of a commercial beef heart PDE preparation.

MATERIALS AND METHODS

[8-³H]Adenosine 3',5'-monophosphate (lot No. WR-2111, spec. act. 14.2 Ci/mmole) and unlabeled cyclic AMP (free acid) were obtained from Schwarz/Mann. The labeled nucleotide was 97% pure (as determined by thin-layer chromatography¹¹) and was used as supplied by the manufacturer without further purification. Other cyclic nucleotides were purchased from Boehringer Mannheim, Sigma and P–L Biochemicals. Beef heart phosphodiesterase, prepared according to the procedure of Butcher and Sutherland¹², was a product of Boehringer Mannheim (No. 6219208). Tubercidin 3',5'-cyclic phosphate, tolbutamide (Orinase), chlorpropamide and quazodine (6,7-dimethyoxy-4-ethylquinazoline) were generous gifts of Upjohn, Pfizer, and Mead Johnson, respectively. The prostaglandins E₁, E₂ and F_{1a} used in this study were kindly provided by Dr John Pike of Upjohn, 7-oxa-13-prostynoic acid by Dr Josef Fried of The University of Chicago, and polyphloretin phosphate and related compounds by Dr B. Högberg, Aktiebolaget Leo Research Laboratories, Hälsingborg, Sweden.

Determination of phosphodiesterase activity

The assay procedure was based on the BaSO₄-Zn(OH)₂ coprecipitation of [³H]-AMP, the end product of enzymatic breakdown, and subsequent liquid scintillation counting of unhydrolyzed cyclic [3H]AMP substrate remaining in the supernate¹³. Into each assay tube was added 50 μ l of substrate Solution A containing 40 mM Tris-HCl, pH 8.0, I mM sodium 1,2-di(2-aminoethoxy)ethane-N,N,N',N'-tetraacetic acid (EGTA), 0.12 mM AMP, 3·10⁻⁷ M cyclic [³H]AMP and, unless otherwise indicated, 6 mM MgCl₂ followed by 50 μ l of Solution B containing, in 40 mM Tris-HCl, pH 8.0, three times the desired final concentration of unlabeled substrate, inhibitor or other test material. After mixing on a Vortex the tubes were placed in a water bath at 30 °C. The reaction was initiated by the addition of 50 μ l of Solution C containing enzyme diluted in 40 mM Tris-HCl, pH 8.0, to a concentration sufficient to hydrolyze 40-50% of the cyclic [3H]AMP present initially (i.e. 6.0-7.5 pmoles) during a 10-min incubation at 30 °C. The reaction was terminated by the addition of 0.2 ml of 5% $ZnSO_4$ followed by 0.2 ml of 0.15 M $Ba(OH)_2$ and 50 μ l of water*. After thorough mixing on a Vortex the tubes were allowed to stand at room temperature for 10 min then centrifuged at 1200 \times g for 20 min. Precipitation with 0.2 ml each of the ZnSO₄ and Ba(OH)₂ solutions was repeated, care being taken not to disturb the original precipitate. 0.5 ml of the final supernate was counted in 10 ml of Bray's dioxane-based counting solution14 in a Packard Tri-Carb liquid scintillation counter. The rate of hydrolysis was estimated by subtraction of the residual cyclic [3H]AMP radioactivity from the total, i.e. initial, cyclic [3H]AMP radioactivity. In the early phase of this work the rate of hydrolysis so obtained was corroborated and the distribution of end products determined by thin layer chromatography of acid extracts of incubation mixtures on PEI cellulose plates in 0.3 M LiCl¹¹.

Preparation of the enzyme

Fresh bovine thyroid glands were obtained from a local abattoir and kept at 4-5 °C through all subsequent steps. They were freed of connective tissue and fat, minced, then extracted and processed as described for skeletal muscle phosphodiesterase by Huang and Kemp¹⁵, up to the first DEAE-Sephadex A 50 chromatography step. Three successive, pooled fractions eluted from the column were dialyzed and contained 31.2, 64.3 and 37.9 mg/ml protein, respectively; the specific activity (pmoles cyclic [3H]AMP hydrolyzed/10 min per mg protein) of each fraction was essentially the same. The first of these fractions was used throughout this work; at a dilution of 1:10 it hydrolyzed approximately 40–50% of the cyclic [3 H]AMP substrate under the conditions of the assay described above. While the crude (NH₄)₂SO₄ fraction used as the starting material for DEAE-Sephadex chromatography yielded predominantly inosine and hypoxanthine (80.0% and 13.6%, respectively) as hydrolytic end products, only negligible amounts (< 5%) of end products other than AMP accumulated during incubation with the column-treated fraction, indicating removal of 5'-nucleotidase and deaminase activity. Aliquots of the dialyzed enzyme preparation were stored at -80 °C; they retained full activity for several months.

Immunoglobulin G from normal and long-acting thyroid stimulator-positive

^{*} It was demonstrated in the initial phase of this work that the amount of ZnSO₄ used for coprecipitation of AMP completely arrested the phosphodiesterase reaction.

sera was prepared by the method of Baumstark *et al.*¹⁶. Biological activity was determined by the mouse bioassay of McKenzie¹⁷. A crude cyclic AMP-binding protein from beef kidney was isolated as described by Cheung¹⁸. Protein determinations were carried out by the method of Lowry *et al.*¹⁹.

Kinetic plots of the data were obtained and K_i values for competitive inhibition were calculated according to Dixon and Webb²⁰.

t-tests for statistical significance of differences between experimental observations were calculated according to Dixon and Massey²¹.

RESULTS

Under the conditions of the assay procedure used and up to 40–50% cyclic [³H]-AMP hydrolysis, the rate of the reaction was proportional to time and enzyme concentration. The pH optimum of the enzyme was between 8.0 and 8.4 (Fig. 1).

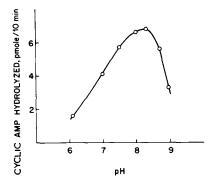


Fig. 1. Effect of pH on cyclic [³H]AMP hydrolysis by partially purified bovine thyroid phosphodiesterase. Assay carried out as described under Materials and Methods except that 50 mM Trismaleate buffer was substituted for 40 mM TrismHCl. Initial cyclic [³H]AMP concentration was 10⁻⁷ M.

When the rate of hydrolysis was determined at substrate concentrations ranging from 10^{-7} to $6.7 \cdot 10^{-5}$ M, kinetic plots of the data yielded two distinct slopes and 1/v intercepts, hence two K_m and V values (Fig. 2). The apparent K_m value obtained at $[S] = 2.3 \cdot 10^{-7}$ M to $4.4 \cdot 10^{-6}$ M was $4 \cdot 10^{-6}$ M; at [S] ranging from $6.8 \cdot 10^{-6}$ to $6.7 \cdot 10^{-5}$ M the apparent K_m was one order of magnitude greater, i.e. $4 \cdot 10^{-5}$ M. The two K_m values obtained for the heart enzyme under identical experimental conditions were in the order of 10^{-6} M and 10^{-4} M (plots not shown).

 Mg^{2+} or other bivalent cation was required for activation of the enzyme. Only a minute quantity of cyclic [3H]AMP was hydrolyzed in a Mg^{2+} -free medium; hydrolysis increased sharply with increasing concentrations of the cation; a maximal rate was achieved at approximately 4 mM Mg^{2+} (Fig. 3). Double reciprocal plots of I/v vs $I/[Mg^{2+}]$, again, yielded two straight lines with two distinct K_m and V values. Other bivalent cations affected enzymatic activity in a more complex manner; Mr^{2+} , Ca^{2+} and Co^{2+} were ineffective or inhibitory at 0.1 mM and stimulatory, although to a lesser extent than Mg^{2+} , at 1 mM. Zr^{2+} , on the other hand, activated the enzyme at the

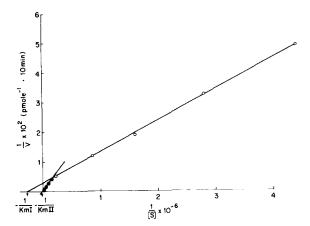


Fig. 2. Double-reciprocal plot of cyclic [3 H]AMP hydrolysis by bovine thyroid phosphodiesterase. Assay carried out as under Materials and Methods. Cyclic [3 H]AMP concentration was 10⁻⁷ M throughout; [S] was varied by the addition of progressively increasing quantities of unlabeled cyclic AMP. Values for K_m I at [S] = $2.3 \cdot 10^{-7}$ to $4.4 \cdot 10^{-6}$ M and K_m II at [S] = $6.8 \cdot 10^{-6}$ to $6.7 \cdot 10^{-5}$ M were calculated from the $-1/K_m$ intercepts on the abscissa.

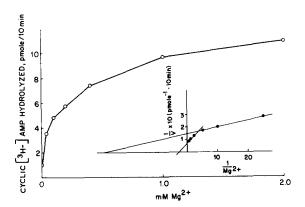


Fig. 3. Kinetic plots of Mg²⁺ activation of cyclic [³H]AMP hydrolysis by bovine thyroid phosphodiesterase. Assay was carried out as described under Materials and Methods except that Solution A contained no Mg²⁺; instead, MgCl₂ was added to Solution B at three times the desired final concentration. Initial cyclic [³H]AMP concentration was 10⁻⁷ M.

lower and inhibited it at the higher concentration tested (Table I). The monovalent cations Na⁺, K⁺, Li⁺ and NH₄⁺ were completely ineffective.

Acylated derivatives of cyclic AMP as well as several other cyclic nucleotides brought about varying degrees of inhibition of cyclic [³H]AMP hydrolysis, although none of the nucleotides tested was as effective in this regard as unlabeled cyclic AMP itself (Table II). Only the pyrimidine-based uridine 3′,5′-monophosphate (cyclic UMP) was completely ineffective.

The kinetics of the inhibition displayed by the butyryl derivatives of cyclic AMP were further explored. Kinetic plots in the presence of 10^{-4} M monobutyryl or dibutyryl cyclic AMP established that all three derivatives gave a competitive-type inhibition in both substrate concentration ranges studied (Fig. 4). K_i values for di-

TABLE I

effect of bivalent cations on cyclic $[^3H]AMP$ hydrolysis by partially purified bovine thyroid phosphodiesterase

Assay conditions were as described under Materials and Methods, except that $\mathrm{MgCl_2}$ and EGTA were omitted from Solution A and three times the desired final concentration of bivalent cation was added to Solution B. Initial substrate concentration was 10^{-7} M.

Addition	pmoles cyclic [3H]AMP hydrolyzed 10 min*			
	0	o.1 mM	1.0 mM	
Vone	1. 1 7 ± 0.16			
MgCl ₂		2.92 ± 0.42	4.59 ± 0.13	
MnCl ₂		1.02 ± 0.16	3.67 ± 0.15	
CaCl ₂		0.72 ± 0.24	1.78 ± 0.23	
CoCl ₂		0.72 ± 0.04	3.27 ± 0.24	
$ZnSO_4$	_	1.88 ± 0.24	0.45 ± 0.26	

^{*} Results are the mean $\pm S.D.$ of triplicate determinations.

TABLE II

EFFECT OF BUTYRYL DERIVATIVES OF CYCLIC AMP AND OF OTHER CYCLIC NUCLEOTIDES ON CYCLIC [3H]AMP HYDROLYSIS BY BOVINE THYROID PHOSPHODIESTERASE

Additions	$Concn. \ (M)$	Phosphodiesterase activity (% cyclic [³H]AMP hydrolyzed 10 min*)	
		Thyroid	Heart
Cyclic AMP	10-6	70	
,	10-5	23	
	10^{-4}	13	
2',3'-Cyclic AMP	10-4	88	
- •	10-3	54	
O ² '-Monobutyryl cyclic AMP	10^{-4}	27	42
	10-3	16	8
N ⁶ -Monobutyryl cyclic AMP	10-4	57	68
3 3 3	10^{-3}	20	43
N ⁶ ,O ² '-Dibutyryl cyclic AMP	10^{-4}	75	72
	10^{-3}	33	45
Cyclic GMP	10^{-4}	89	
<u> </u>	10_{-3}	21	
N ² ,O ² '-Dibutyryl cyclic GMP	10^{-4}	8o	
, , , , ,	10_{-3}	48	
Cyclic IMP	10^{-4}	86	
-	10-3	79	
O ² '-Monobutyryl cyclic IMP	10^{-4}	85	
	10_{-3}	72	_
Cyclic UMP	10^{-4}	100	_
•	10-3	88	
7-Deaza-3',5'-AMP**	10 ⁻⁴	71	_
	10-3	31	_

^{*} Initial cyclic [3 H]AMP concentration = $^{10^{-7}}$ M; 6.7 pmoles of cyclic [3 H]AMP hydrolyzed/ 10 min in the absence of unlabeled nucleotide taken as 100. Results are the mean of triplicate determinations.

^{**} Tubercidin 3',5'-cyclic phosphate.

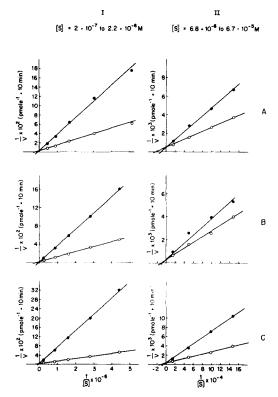


Fig. 4. Kinetic representation of the inhibition of bovine thyroid phosphodiesterase by the butyryl derivatives of cyclic AMP. Assay carried out as for Fig. 2. Inhibitors: (A) N^6 , O^2 -dibutyryl cyclic AMP; (B) N^6 -monobutyryl cyclic AMP; (C) O^2 -monobutyryl cyclic AMP. \bigcirc — \bigcirc , no inhibitor; \bullet — \bullet , inhibitor added to a final concentration of 10^{-4} M.

butyryl cyclic AMP, N^6 -monobutyryl cyclic AMP and $O^{2'}$ -monobutyryl cyclic AMP were calculated as $1.6 \cdot 10^{-4}$ M, $1.1 \cdot 10^{-4}$ M and $2.6 \cdot 10^{-5}$ M, respectively.

Thyroid phosphodiesterase was strongly inhibited by the methylxanthines, theophylline and caffeine (Table III). Aminophylline, a more soluble complex of 2 moles of theophylline and 1 mole of EDTA, was more inhibitory than theophylline proper; at a concentration of 10⁻² M, that commonly used in *in vitro* studies of intracellular cyclic AMP levels²², it completely inhibited the enzymatic hydrolysis of cyclic AMP by phosphodiesterase. Quazodine, a compound structurally similar to theophylline, and recently reported to be a more potent inhibitor of phosphodiesterase from a variety of tissues than the latter²³, elicited a greater degree of inhibition in our system as well. Only a modest degree of inhibition was observed upon addition of the sulfonylureas, chlorpropamide and tolbutamide; these agents were, however, equally ineffective in inhibiting bovine heart phosphodiesterase.

Addition of high concentrations of pituitary thyrotropin brought about a slight but significant increase of thyroidal phosphodiesterase activity; biologically inactive thyrotropin, on the other hand, was ineffective (Table IV). The heart enzyme was similarly affected by thyrotropin. Immunoglobulin G from either normal or long-acting thyroid stimulator-positive serum was without effect as were the prostaglandins

TABLE III

EFFECT OF PHOSPHODIESTERASE INHIBITORS ON THYROID AND HEART PHOSPHODIESTERASE ACTIVITY

Additions	Concn (M)	Enzyme activity (% cyclic [³H]AMP hydrolyzed 10 min*)	
		Thyroid	Heart
Caffeine	10-4	81	74
	10-3	50	29
Theophylline	10^{-4}	73	51
	IO-3	32	26
Aminophylline	IO-2	90	_
	10^{-4}	60	_
	IO-3	I 2	_
	IO-2	O	
Quazodine	10-4	4 I	5
•	10_{-3}	II	0
Chlorpropamide	10^{-4}	91	
	10-3	87	
	5·10-3**	73	
olbutamide	10-4	92	_
	10-3	85	_
	5·10-3**	72	_

Assay of enzyme activity as described under Materials and Methods.

E₂ and F_{1a}. A slight but significant inhibition was obtained in the presence of prostaglandin E₁ and the structurally related prostaglandin antagonist, 7-oxa-13-prostynoic acid²⁴. Polyphloretin phosphate, another antagonist of prostaglandins in some systems²⁵, was also inhibitory; the inhibition appeared to be especially pronounced when a low molecular weight fraction²⁵ of this compound was employed.

Preliminary experiments with a cyclic AMP-binding protein from beef kidney¹⁸ showed that following preincubation of cyclic [³H]AMP with binding protein at o °C for 60 min the remaining and, presumably, protein-bound substrate was completely resistant to hydrolysis by subsequently added thyroidal phosphodiesterase (Fig. 5). One unexpected result of this experiment was the demonstration that the rate of the phosphodiesterase reaction at o °C was equal to that measured at 30 °C. The recent report of Cheung¹⁸ suggests a similar lack of temperature dependence for a bacterial phosphodiesterase preparation.

DISCUSSION

Thyroidal phosphodiesterase has heretofore not been characterized in detail. As was indicated earlier, previous reports dealing with the measurement of thyroid phosphodiesterase activity must be considered somewhat inconclusive because of the relatively crude thyroid fractions employed.

In contrast, the present study has relied on the use of a purified thyroid enzyme

^{*} Initial cyclic [9 H]AMP concentration = $^{10^{-7}}$ M; 7.2 and 6.0 pmoles of cyclic [9 H]AMP hydrolyzed/10 min in the absence of inhibitor taken as 100. Results are mean of triplicate determinations.

^{** 5.10-3} M solution was saturated under these assay conditions.

TABLE IV ${\tt EFFECTS} \ \ of \ \ thyroid \ \ stimulators \ \ \ and \ \ antagonists \ \ thereof \ \ on \ \ cyclic \ [^3H]AMP \ \ \ hydrolysis$

Additions	Concn	Enzyme activity (% cyclic[3H]AMP hydrolyzed 10 min*)		
		Thyroid	Heart	
Thyrotropin**	500 munits/ml	110.1 ± 0.7***	110.0 ± 4.9 [†]	
J	100 munits/ml	$106.4 + 0.6^{\dagger}$	$109.7 \pm 4.2^{\dagger}$	
	50 munits/ml	105.7 ± 2.0	104.8 ± 2.5	
	10 munits/ml	105.3 ± 2.6		
	500 munits/ml	97.8 ± 0.65	108.1 ± 6.7	
	(heat inactivated ††)	21 - 0	,	
Normal immunoglobulin G	5 mg/ml	97.8 ± 5.2		
3	ı mg/ml	101.2 + 3.6		
	0.2 mg/ml	100,1 + 2.2		
Long-acting thyroid stimulator	0,			
immunoglobulin G†††	5 mg/ml	102.6 ± 0.8	_	
	ı mg/ml	101.7 ± 3.7		
	o.2 mg/ml	100.6 ± 4.6	<u> </u>	
Prostaglandin E ₁	10^{-4} M	$85.3 \pm 4.2^{\dagger}$	83.6 ± 4.0†	
Prostaglandin E ₂	10^{-4} M	91.0 ± 4.8	$87.8 \pm 3.9^{\dagger}$	
Prostaglandin $F_{1\alpha}$	10 ⁻⁴ M	93.3 ± 4.4	$75.1 \pm 2.9***$	
7-Oxa-13-prostynoic acid	$10^{-4}~\mathrm{M}$	78.8 + 4.4***		
Polyphloretin phosphate	100 μg/ml	$72.4 \pm 1.0***$	_	
	25 μg/ml	$83.9 \pm 0.7***$		
Leo 1281 (low mol. wt fraction	- , -			
of polyphloretin phosphate)	100 μg/ml	$17.7 \pm 8.7***$		
* * * * * * * * * * * * * * * * * * * *	$25 \mu\mathrm{g/ml}$	$17.7 \pm 8.7^{***} \\ 34.8 \pm 2.6^{***}$	-	
	10 μg/ml	$65.1 \pm 5.6***$	_	

^{*} Initial cyclic [³H]AMP concentration = 10^{-7} M; 7.4 and 6.1 pmoles of cyclic [³H]AMP hydrolyzed/10 min in the absence of test agent taken as 100. Results are the mean \pm S.D. of triplicate determinations.

preparation, free of contamination by other hydrolytic enzymes of nucleotide metabolism; hence, one that lends itself to detailed kinetic characterization. Further, the present communication is based on an assay procedure which measures cyclic AMP degradation at substrate concentrations (10^{-7} M) comparable to those found in the isolated thyroid cell under basal conditions^{11,22}. Thus, this assay procedure has enabled us to observe a second Michaelis constant in the 10^{-6} M range, one that would not have been apparent at the higher substrate concentrations employed in some previous studies^{3,10}. Moreover, the higher K_m value obtained in the present study was one order of magnitude lower than that obtained in a crude fraction of rat thyroid by Bastomsky $et\ al.^{10}$. These considerations emphasize the need for studies using a purified enzyme.

With respect to its kinetic properties, the purified enzyme from thyroid closely resembled phosphodiesterase from other tissues. These similarities included two K_m values, a finding previously reported for the brain, muscle, kidney and adipose tissue enzymes²⁶; a bivalent cation requirement, including the biphasic action of Zn^{2+} (ref.

^{**} Thytropar (Armour Pharmaceutical Co.).

^{***} Denotes P < o.o.(cf. no additions).

[†] Denotes P < 0.05 (cf. no additions).

^{††} Incubated at 70 °C for I h.

^{†††} Bioassay response = 1173%/2.5 mg per mouse.

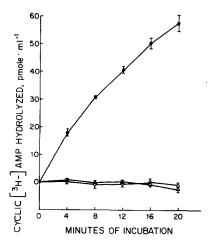


Fig. 5. Effect of a cyclic AMP-binding protein from bovine kidney¹⁸ on bovine thyroid phosphodiesterase activity. 1.5 ml incubation mixture contained, in addition to phosphodiesterase and binding protein as indicated, cyclic [3 H]AMP, MgCl $_2$, EGTA and AMP at the same concentrations as in the phosphodiesterase assay and Tris–HCl, pH 7.6 at 25 mM. Incubation at 0 $^{\circ}$ C was carried out in two stages. During the first 60-min stage cyclic [3 H]AMP substrate was preincubated with binding protein; thyroid phosphodiesterase was then added and 100- μ l aliquots were removed at 4-min intervals and added to an equal volume of ice-chilled 12% trichloroacetic acid. The distribution of end products in the acid extract was determined by thin layer chromatography on PEI cellulose. (Chromatographic analysis of samples taken at 0 min of the second stage indicated that approx. 35% of the cyclic [3 H]AMP present had been hydrolyzed to inosine and hypoxanthine during the first 60-min stage. No further hydrolysis occurred during the second 20-min stage of incubation). \bullet — \bullet , phosphodiesterase, 4 mg/ml; \bigcirc — \bigcirc , binding protein, 11 mg/ml; \bigcirc — \bigcirc , binding protein plus phosphodiesterase. Values represent mean and range of duplicate determinations.

27); and marked inhibition by the methylxanthines⁸ and quazodine²³. In addition, the "specific activity" of our enzyme preparation did not increase during the course of partial purification, a situation perhaps analogous to that described by Cheung²⁷ for brain phosphodiesterase which progressively loses activity during purification. In contrast to other recent studies²⁸, only slight inhibition of phosphodiesterase activity was obtained upon addition of the sulfonylureas, chlorpropamide and tolbutamide. It should be noted, however, that the sulfonylureas were similarly ineffective in parallel measurements of heart phosphodiesterase activity, owing, possibly, to our inability to dissolve these compounds under our assay conditions at concentrations exceeding 5 mM. Although the sulfonylureas have been implicated as pharmacological agents affecting thyroid function²⁸, this action does not appear to be related to an inhibition of thyroidal phosphodiesterase.

Our failure to obtain an activation of the enzyme by $\mathrm{NH_4^+}$ and other monovalent cations at concentrations ranging from 10 to 100 mM is in contrast to the finding of $\mathrm{Nair^{29}}$, who reported a marked activation of dog heart phosphodiesterase by $\mathrm{NH_4^+}$.

The degree of inhibition of cyclic [³H]AMP hydrolysis by other cyclic nucleotides is presumably related to the ability of these compounds to interact with the active site of the enzyme; the failure of cyclic UMP to affect enzymatic activity suggests a requirement for the purine structure. The strong competitive inhibition of thyroid phosphodiesterase by the mono- and dibutyryl derivatives of cyclic AMP is of con-

siderable interest since these compounds are capable of mimicking hormone action in the thyroid³⁰ and numerous other tissues³¹. (Solomon³² recently reported inhibition of adipose tissue phosphodiesterase by dibutyryl cyclic AMP; the results of his study are entirely analogous to those reported herein.) It is possible that an inhibition of the hydrolysis of endogenous cyclic AMP accounts, at least in part, for this action of the butyryl derivatives, as suggested by Klein and Raisz³³. Further, the competitive interaction effected by these derivatives suggests that the free –NH₂ group in the 6-position and the free –OH group in the 2'-position are not required for binding to the active site of the enzyme.

Chronic in vivo stimulation of rat thyroid by 6-n-propylthiouracil or low-iodine diet leads to an increase in phosphodiesterase activity of thyroid homogenates 10, while acute in vivo administration fails to do so. Direct in vitro addition of thyrotropin also fails to affect phosphodiesterase activity in bovine², canine³ and human⁹ thyroid homogenates. In the present study with the purified thyroid enzyme, we demonstrated a small but significant increase in enzymatic activity upon in vitro addition of biologically active thyrotropin; the heat-inactivated hormone was without effect. This finding would tend to support the hypothesis of Bastomsky et al. 10 of an increased turnover of cyclic AMP in the stimulated thyroid gland. However, the small magnitude of the thyrotropin effect leaves its physiological significance open to question. Immunoglobulin G with long-acting thyroid stimulator activity was ineffective, in accord with the findings in human thyroid homogenates by Miyai et al.9, as were the prostaglandins E₂ and F_{1a}. A slight inhibition of phosphodiesterase activity was obtained with prostaglandin E₁, an effect which would tend to potentiate the elevation of intracellular cyclic AMP levels brought about by this agent through the activation of adenylate cyclase^{6,7}.

The prostaglandin antagonists 7-oxa-13-prostynoic acid and polyphloretin phosphate, inhibitors of thyrotropin- and prostaglandin-induced cyclic AMP accumulation in thyroid gland^{34,35}, were, paradoxically, also found to be inhibitors of the phosphodiesterase reaction. This inhibition may be relevant in certain *in vitro* experiments with thyroid cells where prostaglandin antagonists occasionally exhibit agonist properties^{34,35}. It must, however, be remembered that the correlation between phosphodiesterase inhibition in cell-free systems and pharmacological action in intact cells is not necessarily a direct one³⁶; factors such as protein binding, lipid solubility and intracellular distribution of the inhibitor may determine the ultimate pharmacological response. Indeed, our previous studies with intact thyroid cells suggest that aminophylline and dibutyryl cyclic AMP inhibited the degradation of labeled cyclic AMP therein to a much lesser extent than when the purified enzyme was employed¹¹.

As was reported for phosphodiesterase from other sources^{18,37}, the purified enzyme from thyroid did not attack the protein bound form of cyclic AMP. The interpretation of these results is somewhat complicated by the endogenous hydrolytic activity (*i.e.* phosphodiesterase, 5'-nucleotidase and deaminase) of the crude binding protein preparation (Szabo and Burke, unpublished observations). Further work with a more highly purified binding protein is thus needed to establish this point conclusively.

ACKNOWLEDGMENT

This study was supported by a grant (AM 11136) from the National Institute of Arthritis and Metabolic Diseases, U.S. Public Health Service.

REFERENCES

- I G. Burke, Acta Endocrinol., 66 (1971) 558.
- 2 I. Pastan and R. Katzen, Biochem. Biophys. Res. Commun., 29 (1967) 792.
- 3 U. Zor, T. Kaneko, I. P. Lowe, G. Bloom and J. B. Field, J. Biol. Chem., 244 (1969) 5189.
 4 G. S. Levey and I. Pastan, Life Sci., 9 (1970) 67.
- T. Kaneko, U. Zor and J. B. Field, Metabolism, 19 (1970) 430.
- 6 G. Burke, Am. J. Physiol., 218 (1970) 1445.
- 7 J. Field, A. Dekker, U. Zor and T. Kaneko, Ann. N.Y. Acad. Sci., 180 (1971) 278.
- 8 G. A. Robison, R. W. Butcher and E. W. Sutherland, Cyclic AMP, Academic Press, New York, 1971, p. 84.
- 9 K. Miyai, N. Amino, M. Azukizawa and Y. Kumahara, Acta Endocrinol., 67 (1971) 209.
- 10 C. H. Bastomsky, M. Zakarija and J. M. McKenzie, Biochim. Biophys. Acta, 230 (1971) 286.
- II M. Szabo and G. Burke, Biochim. Biophys. Acta, 264 (1972) 289.
- 12 R. W. Butcher and E. W. Sutherland, J. Biol. Chem., 237 (1962) 1244.
 13 G. Krishna, B. Weiss and B. B. Brodie, J. Pharmacol. Exp. Ther., 163 (1968) 379.
- 14 G. A. Bray, Anal. Biochem., 1 (1960) 279.
- 15 Y-C. Huang and R. G. Kemp, Biochemistry, 10 (1971) 2278.
- 16 J. S. Baumstark, R. J. Laffin and W. A. Bardawil, Arch. Biochem., 108 (1964) 514.
- 17 J. M. McKenzie, J. Clin. Endocrinol., 21 (1961) 635.
- 18 W. Y. Cheung, Biochem. Biophys. Res. Commun., 46 (1972) 99.
 19 O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, J. Biol. Chem., 193 (1951) 265.
- 20 M. Dixon and E. C. Webb, Enzymes, Academic Press, New York, 2nd edn, 1964, pp. 315-358.
- 21 W. J. Dixon and F. J. Massey, Introduction to Statistical Analysis, McGraw-Hill, New York, 1951, p. 97. 22 J. Knopp, V. Stolc and W. Tong, J. Biol. Chem., 245 (1970) 4403.
- 23 M. S. Amer and H. P. Browder, Proc. Soc. Exp. Biol. Med., 136 (1971) 750.
- 24 J. Fried, C. Lin, M. Mehra, W. Kao and P. Dalven, Ann. N.Y. Acad. Sci., 180 (1971) 38.
- 25 K. Eakins, Ann. N.Y. Acad. Sci., 180 (1971) 386.
- 26 W. J. Thompson and M. M. Appleman, Ann. N.Y. Acad. Sci., 185 (1971) 36.
- 27 W. Y. Cheung, Biochim. Biophys. Acta, 242 (1971) 395.
- 28 J. Roth, T. E. Prout, I. D. Goldfine, S. M. Wolfe, J. Muenzer, L. E. Grauer and M. L. Marcus, Ann. Int. Med., 75 (1971) 607.
- 29 K. G. Nair, Biochemistry, 5 (1966) 150. 30 B. Wilson, E. Raghupathy, T. Tonoue and W. Tong, Endocrinology, 83 (1968) 877.
- 31 J. G. Hardman, G. A. Robison and E. W. Sutherland, Annu. Rev. Physiol., 33 (1971) 311.
- 32 S. S. Solomon, J. Lab. Clin. Med., 79 (1972) 598.
- 33 D. C. Klein and L. G. Raisz, Endocrinology, 89 (1971) 818.
- 34 S. Sato, M. Szabo, K. Kowalski and G. Burke, Endocrinology, 90 (1972) 343.
- 35 G. Burke, S. Sato, K. Kowalski and M. Szabo, J. Lab. Clin. Med., 78 (1971) 823.
- 36 J. A. Beavo, N. L. Rogers, O. B. Crofford, C. E. Baird, J. G. Hardman, E. W. Sutherland and E. V. Newman, Ann. N.Y. Acad. Sci., 185 (1971) 129.
- 37 R. F. O'Dea, M. K. Haddox and N. D. Goldberg, J. Biol. Chem., 246 (1971) 6183.